

Mr. Awadhesh Yadav

Received-20.01.2025,

Revised-27.01.2025,

Accepted-03.02.2025

E-mail : awadhesh_fedu@sgtuniversity.org

Digital Inclusion in the Light of NEP 2020: Accessibility of Online Learning Platforms for Students with Visual Impairments

Assistant Professor, Faculty of Education, Department of Special Education, SGT University, Gurugram (Haryana), India

Abstract: The National Education Policy 2020 envisions technology as a transformative force democratizing educational access across India, particularly for marginalized learners, including students with disabilities. This research paper examines the accessibility of online learning platforms for students with visual impairments within the NEP 2020 framework. Through critical analysis of current digital learning environments, assistive technology integration, and policy implementation challenges, this study reveals significant gaps between policy aspirations and ground-level realities. While NEP 2020 articulates strong commitments to digital equity and inclusive education, students with visual impairments face substantial barriers accessing online platforms due to inaccessible interface design, incompatibility with assistive technologies, lack of alternative content formats, and inadequate technical support. The paper proposes evidence-based recommendations for platform developers, educational institutions, and policymakers to realize NEP 2020's vision of truly inclusive digital learning. Findings indicate that achieving digital inclusion requires not merely technological solutions but comprehensive approaches, addressing design standards, capacity building, quality assurance mechanisms, and sustained investment in accessible infrastructure. This research contributes to understanding how India can leverage technology for educational equity while ensuring no learner is left behind in the digital transformation

Key words : Digital inclusion, NEP 2020, visual impairment, online learning accessibility, e-learning.

Introduction -1.1 The Digital Education Revolution : India's educational landscape has undergone unprecedented digital transformation, accelerated dramatically by the COVID-19 pandemic which necessitated rapid shifts to online learning modalities. The National Education Policy 2020 positions technology as central to reimagining education, envisioning digital platforms expanding access, personalizing learning experiences, and bridging geographical and socioeconomic divides. The policy articulates ambitious goals including establishing a National Educational Technology Forum, creating digital repositories of educational content, promoting adaptive learning technologies, and ensuring equitable access to digital infrastructure. This technological optimism promises revolutionary change in how education is delivered, accessed, and experienced across India's diverse population.

However, for students with visual impairments, the digital revolution presents a paradox. While technology theoretically enables unprecedented access to information and learning opportunities previously unimaginable, poorly designed digital platforms can create new barriers more formidable than those in traditional educational settings. A printed textbook inaccessible to a blind student might be converted to braille or audio format, but an inaccessible website or learning management system can become completely unusable despite containing identical content. The promise of digital inclusion thus remains contingent upon intentional, informed design and implementation practices that prioritize accessibility from inception rather than as afterthought.

1.2 Understanding Visual Impairment in Digital Contexts : Visual impairment encompasses a spectrum of conditions affecting sight, from complete blindness to varying degrees of low vision. In educational contexts, approximately 1.5 to 2 million children in India experience significant visual impairments affecting their learning. Digital environments present specific challenges for this population. Students who are blind typically access digital content through screen readers, software applications converting on-screen text and interface elements into synthesized speech or refreshable braille output. Students with low vision may employ screen magnification software, high-contrast display settings, or specialized color schemes enhancing visibility. Both groups require digital content structured in ways compatible with these assistive technologies.

The effectiveness of digital learning for visually impaired students depends entirely on whether platforms are designed following accessibility standards. An accessible platform enables independent navigation, content comprehension, and task completion. An inaccessible platform, regardless of content quality, excludes visually impaired users completely or forces reliance on sighted assistance, undermining autonomy and educational equity.

1.3 Research Objectives : This paper investigates digital inclusion for visually impaired students within NEP 2020's framework through examining policy provisions for digital accessibility and inclusive

technology, analyzing current accessibility status of online learning platforms used in Indian education, identifying barriers preventing effective digital participation, exploring assistive technology integration challenges, and proposing actionable recommendations for stakeholders including platform developers, educational institutions, and policymakers. The research aims to bridge the gap between NEP 2020's inclusive vision and implementation realities, contributing evidence-based insights toward achieving genuine digital equity.

2. NEP 2020's Vision for Digital and Inclusive Education - 2.1 Technology as Educational Equalizer

Equalizer : The National Education Policy 2020 dedicates substantial attention to leveraging technology for educational transformation. The policy envisions digital tools reducing inequalities, reaching disadvantaged and remote learners, supporting diverse learning needs, and providing high-quality content regardless of location or circumstance. Specific technological initiatives outlined include establishing NDEAR, the National Digital Education Architecture creating a unified digital infrastructure, developing DIKSHA and similar platforms housing openly accessible educational resources, promoting online and distance learning expanding educational reach, utilizing artificial intelligence for personalized learning experiences, and ensuring digital literacy for all students and educators.

For students with disabilities, NEP 2020 explicitly recognizes technology's potential to mitigate barriers inherent in traditional educational formats. The policy acknowledges that digital content can be adapted to multiple formats, assistive technologies enable independent access to information, and online platforms can provide flexible pacing and customized support addressing individual learning profiles.

2.2 Inclusive Education Framework : NEP 2020 articulates strong commitment to inclusive

education across all its provisions. Key principles relevant to digital inclusion include ensuring "no child loses any opportunity to learn and excel because of circumstances of birth or background," providing "access to quality education for all students, particularly for traditionally marginalized and disadvantaged groups," emphasizing Universal Design for Learning accommodating diverse learner needs, and mandating provision of appropriate assistive devices and technologies for students with disabilities.

The policy specifically addresses educational technology accessibility, stating that digital platforms must be designed considering needs of students with disabilities, content should be available in multiple accessible formats, and teacher training must include instruction on using technology inclusively. These provisions reflect understanding that digital transformation must intentionally include students with disabilities to avoid widening rather than narrowing equity gaps.

2.3 Implementation Mandates - NEP 2020 establishes concrete mechanisms for operationalizing

its digital and inclusive vision. The policy calls for developing national standards for digital content accessibility, creating resource banks of accessible educational materials, establishing support systems providing assistive technologies to students requiring them, training educators in accessible digital pedagogy, and monitoring compliance with accessibility requirements. These structural provisions signal recognition that good intentions require systematic implementation frameworks.

However, as with many policy initiatives, the distance between articulated vision and ground-level reality often proves substantial. Examining current accessibility status of digital learning platforms reveals significant implementation gaps requiring urgent attention if NEP 2020's promise of inclusive digital education is to materialize.

3. Current State of Digital Learning Platform Accessibility - 3.1 Common Accessibility

Barriers : Assessment of online learning platforms currently deployed in Indian educational contexts reveals pervasive accessibility deficiencies creating significant barriers for visually impaired students. Major categories of problems include inadequate keyboard navigation where essential functions require mouse use impossible for screen reader users, missing alternative text for images leaving visual content completely inaccessible, poor heading structure preventing efficient navigation through lengthy content, inaccessible multimedia lacking captions, transcripts, or audio descriptions, complex navigation menus designed visually without logical structure, inaccessible forms and interactive elements preventing task completion, PDF documents that are image-based rather than text-searchable, and incompatibility with assistive technologies causing crashes or dysfunction.

These barriers are not merely inconveniences but fundamental obstacles preventing educational participation. When a student cannot navigate to course materials, cannot access assignment instructions, cannot complete online assessments, or cannot engage in discussion forums, digital learning becomes practically impossible regardless of the student's intellectual capability or motivation.

3.2 Platform-Specific Challenges - Different types of online learning platforms present distinct accessibility challenges. Learning Management Systems like Moodle, Google Classroom, and proprietary institutional platforms often suffer from inconsistent accessibility, where some features function adequately with screen readers while others remain completely inaccessible, complex interface structures confusing non-visual navigation, and frequent updates breaking previously accessible functionality. Video conferencing platforms including Zoom, Google Meet, and Microsoft Teams face issues with screen sharing inaccessible to blind participants, chat functions that are difficult to navigate with assistive technology, and visual cues for participant management lacking audio equivalents.

Educational content repositories and MOOCs frequently contain video content without adequate audio descriptions, interactive simulations relying entirely on visual perception, downloadable materials in inaccessible formats, and search and filtering functions that are keyboard inaccessible. Assessment platforms present perhaps the most critical barriers including timed tests incompatible with slower assistive technology processing, mathematical equations displayed as images rather than accessible markup, diagram-based questions lacking textual alternatives, and anti-cheating software interfering with screen readers.

3.3 Government and Private Sector Platforms - India's government-led digital education initiatives show mixed accessibility performance. DIKSHA, the national digital infrastructure for teachers and students, has made efforts toward accessibility but faces inconsistent implementation across different content types and modules. SWAYAM, providing online courses to all learners, includes some accessible courses but many remain problematic for screen reader users. State-level platforms vary dramatically in accessibility awareness and implementation. Private educational technology companies powering much of India's online learning demonstrate similarly inconsistent commitment to accessibility. Some major platforms have initiated accessibility improvements responding to advocacy and potential legal requirements, while many smaller platforms and startups develop products with little or no accessibility consideration.

This inconsistent landscape means visually impaired students' educational access depends heavily on which specific platforms their institutions happen to adopt, creating arbitrary barriers fundamentally at odds with educational equity principles.

4. Technical Dimensions of Digital Accessibility - 4.1 Web Content Accessibility Guidelines :

The Web Content Accessibility Guidelines, developed by the World Wide Web Consortium, establish international standards for digital accessibility. WCAG defines accessibility through four fundamental principles: content must be perceivable by all users regardless of sensory abilities, interface components must be operable through various input methods, content must be understandable with clear language and predictable functionality, and content must be robust enough to work reliably with diverse technologies including assistive devices.

These principles translate into specific success criteria organized across three conformance levels. Level A represents minimum accessibility, Level AA constitutes the generally accepted standard appropriate for most content, and Level AAA represents enhanced accessibility for specialized contexts. The Rights of Persons with Disabilities Act 2016 references WCAG standards, creating legal obligations for accessibility compliance, though enforcement remains weak. NEP 2020, while not explicitly citing WCAG, aligns philosophically with its principles through emphasis on inclusive design.

4.2 Assistive Technology Compatibility - Digital accessibility requires compatibility with assistive technologies visually impaired students employ. Screen readers represent the primary access method for blind users, with popular options including JAWS, NVDA, and mobile screen readers like Talkback and Voiceover. These technologies interpret digital content structure converting text, interface elements, and functionality into audio output or refreshable braille. Platform accessibility depends on providing proper semantic structure through appropriate heading hierarchies, meaningful link text rather than generic "click here" labels, alternative text for images conveying visual information, form labels explicitly associated with input fields, and ARIA attributes enhancing accessibility of complex interactive elements.

For students with low vision, screen magnification software enlarges portions of screens while maintaining functionality. High-contrast modes improve text visibility against backgrounds. Custom color schemes address specific visual conditions. Platforms must support these adaptations by using relative sizing allowing content to reflow when magnified, maintaining functionality at various zoom levels, and providing sufficient color contrast meeting WCAG standards.

4.3 Alternative Content Formats - Digital inclusion requires providing educational content in multiple formats accommodating different access methods. Text content must be actual text rather than

images of text, enabling screen readers to vocalize it and allowing users to adjust font sizes and styles. Visual information including charts, graphs, diagrams, and infographics, requires textual alternatives, either through detailed alternative text for simpler images or through longer text descriptions for complex visuals. Video and audio content need captions and transcripts for deaf users but also benefit blind users by providing searchable text access to spoken content. Audio descriptions narrate important visual information in videos during natural pauses in dialogue.

Mathematical and scientific content presents particular challenges. Mathematical equations displayed as images are completely inaccessible; proper implementation uses MathML or similar markup enabling screen readers to vocalize mathematical expressions. Chemical structures, physics diagrams, and other scientific visuals require thoughtful textual descriptions or tactile graphic alternatives for blind students to comprehend concepts.

5. Pedagogical Considerations for Inclusive Digital Learning - 5.1 Universal Design for Learning in Digital Contexts : Universal Design for Learning provides a framework for creating inherently accessible learning experiences. UDL's three core principles apply powerfully to digital education. Multiple means of representation ensure information is presented in varied formats including text, audio, video, and interactive simulations, allowing students to access content through preferred modalities. Multiple means of action and expression permit students to demonstrate learning through diverse methods such as written responses, oral presentations, multimedia projects, or alternative assessments. Multiple means of engagement recognize that students connect with content differently, supporting varied interests, challenge levels, and collaboration preferences.

Digital platforms designed following UDL principles benefit all learners while ensuring accessibility for students with disabilities. For example, providing video captions helps not only deaf students but also non-native speakers and students in noisy environments. Offering content in both visual and textual formats supports visually impaired students while also accommodating diverse learning preferences. UDL moves beyond minimal compliance toward excellence in inclusive design.

5.2 Instructor Role in Digital Accessibility - Even perfectly accessible platforms cannot guarantee inclusive education without instructor awareness and commitment. Educators must select accessible content from available resources, create original materials following accessibility guidelines, structure courses logically with clear hierarchies, provide alternative formats proactively rather than reactively, design assessments allowing multiple demonstration methods, and facilitate inclusive online discussions ensuring all students can participate meaningfully.

Many instructors lack training in digital accessibility. NEP 2020 calls for comprehensive teacher professional development, including technology integration skills, yet accessibility-specific training remains rare. Educators need practical guidance on checking document accessibility, creating descriptive alternative text, designing accessible presentations, and troubleshooting assistive technology compatibility issues. Without this capacity, even accessible platforms may host inaccessible content undermining educational equity.

5.3 Student Agency and Self-Advocacy - Digital accessibility involves not only institutional responsibilities but also student agency. Visually impaired students must develop skills in using assistive technologies effectively, communicating accessibility needs to instructors, troubleshooting technical problems independently when possible, and advocating for accommodations when barriers arise. However, placing responsibility on students to constantly request accommodation or overcome barriers represents fundamentally inequitable burden. Proactive accessibility through universal design reduces need for individualized accommodation, though some customization will always remain necessary.

Institutions must create cultures where students feel comfortable disclosing disabilities and requesting support without stigma or bureaucratic obstacles. Streamlined accommodation processes, knowledgeable disability services staff, and institutional commitment to accessibility reduce barriers students face navigating educational systems.

6. Infrastructure and Resource Challenges - 6.1 Digital Divide and Access Inequities : NEP 2020's digital education vision assumes widespread access to internet connectivity and digital devices, yet significant portions of India's population lack reliable access. Rural areas face particular connectivity challenges with limited broadband infrastructure. Lower socioeconomic communities often cannot afford devices and data plans. These baseline digital access gaps affect all students but compound for those with disabilities who may require specialized devices beyond standard smartphones or computers.

Visually impaired students need screen readers, specialized software, and potentially refreshable braille displays or other assistive devices that are substantially more expensive than basic computing equipment. Government schemes providing assistive technologies exist but face implementation challenges including limited awareness among potential beneficiaries, bureaucratic processes delaying device provision, insufficient budgets relative to need, and lack of technical support for device maintenance and troubleshooting.

6.2 Assistive Technology Availability and Affordability - Commercial screen reading software like JAWS costs hundreds of dollars, prohibitive for many Indian families. Free alternatives like NVDA provide excellent functionality but require technical knowledge for installation and configuration. Mobile devices increasingly include built-in accessibility features, democratizing access somewhat, yet optimal educational participation often requires computers that remain less accessible financially. Refreshable braille displays enabling tactile access to digital content cost thousands of dollars, placing them beyond reach for most users despite their educational value.

Schools and institutions face similar resource constraints. Providing assistive technology labs requires substantial initial investment plus ongoing maintenance, software updates, and technical support staff. Budget limitations often relegate accessibility to low priority compared to core infrastructure needs. NEP 2020 acknowledges resource requirements for inclusive education but translating policy recognition into adequate funding remains ongoing challenge.

6.3 Technical Support and Training Gaps - Assistive technology proves useful only when users understand how to employ it effectively and when technical support exists for inevitable problems. Visually impaired students need training in screen reader operation, keyboard navigation strategies, and platform-specific access methods. Educators require training to understand how students access content and how to optimize their teaching for assistive technology compatibility. IT support staff need expertise in assistive technology troubleshooting often absent from standard technical training.

Currently, most Indian educational institutions lack personnel with specialized assistive technology knowledge. Students experiencing accessibility problems often have nowhere to turn for help. This support gap discourages technology adoption and undermines digital inclusion efforts even when accessible platforms and assistive devices exist.

7. Policy Implementation Challenges - 7.1 Gaps Between Policy and Practice : NEP 2020 articulates clear commitments to accessible digital education, yet implementation lags significantly. Several factors contribute to this gap. Awareness deficits mean many platform developers, content creators, and institutional administrators remain unaware of accessibility requirements or underestimate their importance. Capacity limitations result in insufficient technical expertise for implementing accessibility even when intent exists. Financial constraints lead to accessibility being viewed as optional enhancement rather than essential requirement. Accountability gaps emerge from weak enforcement mechanisms for accessibility mandates. Coordination challenges arise as digital education involves multiple stakeholders including technology companies, educational institutions, content developers, and government agencies operating without unified accessibility standards or oversight.

These implementation barriers are not unique to digital accessibility but reflect broader challenges in Indian educational policy execution. However, their impact on students with disabilities is particularly acute given the binary nature of digital accessibility—platforms are either accessible or they are not, with little middle ground.

7.2 Standards and Quality Assurance - Ensuring consistent digital accessibility requires establishing clear standards and mechanisms verifying compliance. While WCAG provides international standards, their adoption in Indian contexts remains inconsistent. Government platforms should model exemplary accessibility, yet even these often fall short. The Rights of Persons with Disabilities Act 2016 mandates accessibility in various domains including digital spaces, but enforcement mechanisms remain underdeveloped.

Quality assurance processes should include accessibility testing as mandatory component of platform development and content creation. Automated testing tools can identify many common accessibility issues efficiently. However, comprehensive accessibility evaluation requires testing with actual assistive technologies and input from disabled users whose lived experiences reveal problems automated tools miss. Currently, such rigorous accessibility testing occurs rarely in Indian educational technology development.

7.3 Procurement and Vendor Accountability - Educational institutions increasingly procure digital learning platforms from commercial vendors rather than developing in-house solutions. This procurement process represents crucial leverage point for advancing accessibility. If institutions make accessibility a mandatory requirement in requests for proposals, vendors must prioritize it to remain competitive. If contracts include specific accessibility conformance criteria with penalties for non-compliance, vendors have incentives ensuring their products meet standards.

However, current procurement practices often overlook accessibility. Decision-makers may lack awareness to ask relevant questions. Vendors may claim accessibility without substantiation. Institutions may accept minimal compliance rather than insisting on robust accessibility. Strengthening procurement processes to mandate and verify accessibility would accelerate progress toward inclusive digital learning environments.

8. Success Stories and Promising Practices - 8.1 Accessible Platform Examples : While challenges are substantial, examples demonstrate that accessible digital learning is achievable when prioritized. Internationally, some universities and educational technology companies have developed highly accessible online learning systems through early involvement of accessibility experts in design, regular testing with disabled users, commitment to WCAG Level AA conformance, transparent documentation of accessibility features, and responsive remediation when issues are identified.

Within India, certain institutions and platforms have made meaningful accessibility progress. Some government digital education initiatives have engaged accessibility consultants improving their platforms. A few universities have established accessibility offices auditing digital resources and training faculty. Individual educators have demonstrated commitment by creating accessible course materials even without institutional mandates. These success stories, while limited, demonstrate feasibility and provide models for broader implementation.

8.2 Collaborative Approaches - Advancing digital accessibility requires collaboration across traditional boundaries. Partnerships between educational institutions and disability organizations bring user perspectives into platform design and testing. Collaborations between government, academic, and private sector entities can share expertise and resources. Open-source accessibility projects allow collective development and refinement of accessible tools and resources.

India's vibrant technology sector presents opportunities for innovation in accessible educational technology. Engaging computer science students and professionals in accessibility challenges through hackathons, competitions, and research grants could accelerate development of India-specific solutions. Leveraging India's strong engineering talent toward inclusive technology innovation aligns with both economic development goals and social equity imperatives.

8.3 International Learning and Adaptation - India can learn from international experiences in digital accessibility while adapting approaches to local contexts. Countries like the United States, United Kingdom, and Australia have more developed accessibility frameworks, enforcement mechanisms, and implementation practices. However, these models emerged in contexts with different resource levels, regulatory environments, and educational systems. Thoughtful adaptation rather than direct importation is necessary, taking inspiration from successful international practices while developing India-appropriate solutions addressing unique challenges including extreme scale and diversity, resource constraints, multilingual complexity, and varied technological infrastructure across regions.

9. Recommendations for Stakeholders - 9.1 For Platform Developers and Technology Companies : Digital learning platform developers must prioritize accessibility from inception by adopting WCAG standards as baseline requirements, conducting automated and manual accessibility testing throughout development, engaging disabled users in usability testing, providing comprehensive accessibility documentation, training development teams in accessible design and coding, planning for accessibility maintenance as platforms evolve, and building accessibility into product roadmaps rather than treating it as optional feature.

Companies should appoint accessibility coordinators responsible for ensuring compliance, allocate adequate resources for accessibility implementation, and view accessibility as market opportunity rather than burden. As awareness grows and regulations strengthen, accessible platforms will gain competitive advantage.

9.2 For Educational Institutions : Schools, colleges, and universities implementing digital learning must establish institutional accessibility policies requiring all digital content and platforms meet defined standards, provide professional development training educators in digital accessibility, create accessibility

support services assisting students and faculty, conduct regular accessibility audits of institutional digital resources, include accessibility requirements in technology procurement, designate accessibility coordinators overseeing institutional compliance, and ensure disability services offices have resources and authority to address digital accessibility issues.

Institutions should recognize that accessibility benefits extend beyond students with disabilities, improving usability for all learners. Investment in accessibility represents investment in educational quality and equity.

9.3 For Policymakers and Government - Government leadership is essential for systemic change.

Recommended policy actions include strengthening enforcement of existing accessibility mandates with clear compliance requirements and consequences, increasing funding for assistive technology provision to students and institutions, establishing national digital accessibility standards specifically for educational contexts, creating centers of excellence in accessible educational technology providing guidance and support, mandating accessibility training in teacher education programs, incentivizing accessible content creation through grants and recognition, requiring accessibility compliance for all government-funded digital education initiatives, and conducting regular monitoring and reporting on digital accessibility implementation.

Government demonstration of commitment through ensuring exemplary accessibility of its own platforms and resources would establish powerful precedent influencing broader education sector.

9.4 For Content Creators and Educators - Individual educators creating digital learning materials

must learn basic accessibility principles, use accessibility checking tools built into common software, write meaningful alternative text for images, structure documents with proper headings, create accessible PDFs from source documents rather than scanned images, caption videos and provide transcripts, design assessments allowing flexible demonstration of learning, and proactively communicate with students about accessibility needs.

Professional development should equip all educators with these fundamental skills. Teaching accessibility should become standard component of instructional design rather than specialized knowledge.

10. Future Directions and Emerging Technologies - 10.1 Artificial Intelligence and Adaptive Learning

Learning : NEP 2020 envisions artificial intelligence playing significant role in personalized education. For visually impaired students, AI technologies offer promising applications including automatic generation of alternative text for images using computer vision, real-time captioning and transcription services, intelligent content summarization and navigation aids, adaptive interfaces adjusting to individual user needs and preferences, and natural language interfaces reducing reliance on complex visual navigation.

However, AI accessibility applications themselves must be designed accessibly and tested rigorously to ensure they function effectively for intended users. Algorithmic bias represents concern if AI systems are trained primarily on data from non-disabled users, potentially performing poorly for people with disabilities.

10.2 Mobile-First Approaches : India's digital access increasingly occurs through mobile devices

rather than computers. Mobile-first educational design could advance accessibility given that smartphones incorporate robust accessibility features and are more affordable and widely available than computers. However, mobile platforms present unique accessibility challenges including smaller screens complicating navigation, touch interfaces that may not work with some assistive technologies, and limited processing power affecting some accessibility features.

Designing educational content and platforms optimized for mobile accessibility while ensuring compatibility with mobile screen readers and other assistive technologies represents important direction for inclusive digital education in Indian context.

10.3 Open Educational Resources : NEP 2020 strongly promotes openly licensed educational

resources enabling wide distribution and adaptation. OER movement presents opportunities for accessibility through allowing anyone to improve and share accessible versions of resources, enabling creation of materials specifically for Indian contexts and languages, reducing cost barriers to accessing quality educational content, and facilitating collaborative development of accessible materials.

However, OER accessibility is not automatic. Many openly licensed resources lack accessibility features. Establishing accessibility standards for OER repositories and incentivizing the creation of accessible open resources would leverage OER's potential for inclusive education.

11. Conclusion - The National Education Policy 2020 presents an ambitious, equity-centered vision

for Indian education with technology positioned as a transformative enabler. For students with visual impairments, digital platforms hold genuine potential to overcome barriers inherent in traditional print-based

educational materials and physical classroom environments. Screen readers, alternative formats, and assistive technologies can provide unprecedented access to information and learning opportunities. However, this potential remains largely unrealized due to pervasive accessibility deficiencies in current online learning platforms and implementation gaps between policy vision and ground-level practice.

Achieving NEP 2020's promise of inclusive digital education requires sustained, multifaceted effort from all stakeholders. Platform developers must prioritize accessibility as a fundamental design requirement rather than an optional add-on. Educational institutions must establish accessibility standards, train faculty, and allocate resources for assistive technology and support services. Policymakers must strengthen enforcement, increase funding, and demonstrate leadership through exemplary government platforms. Content creators and educators must develop skills and awareness to create accessible learning materials. Students and disability advocates must continue pushing for their rights while contributing expertise to improvement efforts.

The path forward demands more than technological solutions. Digital inclusion requires cultural transformation recognizing accessibility as quality indicator rather than specialized accommodation, systematic approaches embedding accessibility throughout design and development processes, capacity building equipping diverse stakeholders with needed knowledge and skills, accountability mechanisms ensuring compliance with standards, and sustained investment treating accessibility as essential infrastructure rather than discretionary expense.

India stands at a critical juncture in educational transformation. Choices made now regarding digital accessibility will determine whether technology serves as a great equalizer, expanding educational opportunities for all learners, or whether it creates new forms of exclusion, leaving students with disabilities further marginalized. NEP 2020 provides policy foundation for choosing the inclusive path. Converting vision into reality remains urgent imperative requiring collective commitment and action. The promise of digital inclusion awaits fulfillment through principled implementation ensuring that as Indian education embraces technology, every student regardless of visual ability can fully participate in and benefit from the digital learning revolution.

REFERENCES

1. Burgstahler, S. (2015). *Universal design in higher education: From principles to practice* (2nd ed.). Harvard Education Press.
2. Caldwell, B., Cooper, M., Reid, L. G., & Vanderheiden, G. (2008). Web Content Accessibility Guidelines (WCAG) 2.0. World Wide Web Consortium (W3C).
3. Chadha, A. (2020). Addressing disability digital divides in India during COVID-19. *Disability & Society*, 35(7), 1194-1199.
4. Das, A. K., & Kuyini, A. B. (2013). Online learning for students with disabilities: A review of the literature. *Journal of Educational Technology & Society*, 16(1), 321-333.
5. Foley, A., & Ferri, B. A. (2012). Technology for people, not disabilities: Ensuring access and inclusion. *Journal of Research in Special Educational Needs*, 12(4), 192-200.
6. Government of India. (2016). The Rights of Persons with Disabilities Act, 2016. Ministry of Law and Justice.
7. Government of India. (2020). National Education Policy 2020. Ministry of Human Resource Development.
8. Hollier, S. (2019). Developing web accessibility solutions for people with diverse disabilities. *Disability and Rehabilitation: Assistive Technology*, 14(1), 1-6.
9. Jaeger, P. T. (2012). *Disability and the Internet: Confronting a digital divide*. Lynne Rienner Publishers.
10. Kent, M. (2015). *Disability and eLearning: Opportunities and barriers*. Ashgate Publishing.
11. Lazar, J., Goldstein, D., & Taylor, A. (2015). Ensuring digital accessibility through process and policy. Morgan Kaufmann.
12. Ministry of Electronics and Information Technology. (2018). *Guidelines for Indian Government Websites*. Government of India.
13. National Council of Educational Research and Training. (2020). *Implementation guidelines for inclusive education*. NCERT.
